Share this page:
Other services (opens in new window)
Sets a cookie

Could chloroplast hold key to fruit ripening in crops?

Visit University of Leicester websiteBBSRC contributes to Global Food Security

2 November 2012

Could chloroplast hold key to fruit ripening in crops? - 2 November 2012. Image: Paul Jarvis and Qihua Ling

Arabidopsis seedlings of three different genotypes grown in sectors. Wild-type plants (top) have a dark green colour, reflecting their large chloroplasts with extensive thylakoid membrane networks; the ppi1 single mutant plants (bottom right) are pale yellow in colour, due to the fact that their chloroplasts do not develop properly; the sp1 ppi1 double mutant (bottom left) has a much greener appearance than ppi1 and contain chloroplasts that are much more developed due to the absence of the SP1 protein. Image: Paul Jarvis and Qihua Ling

University of Leicester biologists discover plant cell regulation process affects chloroplasts.

Biologists may have unearthed the potential to manipulate the functions of chloroplasts, the parts of plant cells responsible for photosynthesis.

Researchers in the University of Leicester's Department of Biology discovered that chloroplasts are affected by the ubiquitin proteasome system (UPS) - a process which causes the breakdown of unwanted proteins in cells, previously thought to only act on central parts of the cell.

As a result, the researchers believe they may be able to use specific proteins to regulate the functions of chloroplasts - such as the conversion of chloroplasts into highly-pigmented chromoplasts during the ripening of fruit.

Their paper, Chloroplast Biogenesis is Regulated by Direct Action of the Ubiquitin-Proteasome System, is due to be published in the journal Science on Friday, November 2.

The paper identifies a gene (SP1) in the nuclei of plant cells that codes for a protein called a ubiquitin E3 ligase which is able to regulate chloroplast development through the UPS process.

The team are already investigating the potential for harnessing the SP1 gene in crop plants, for example to affect the ripening of fruits such as tomatoes, bell peppers and citrus.

The University's Enterprise & Business Development Office has filed a patent application with a view to developing practical applications for the research.

Could chloroplast hold key to fruit ripening in crops? - 2 November 2012. Image: Mats and Paula Töpel

Chloroplasts from three different genotypes of Arabidopsis thaliana: a healthy wild-type chloroplast with an extensive thylakoid membrane network (centre); a chloroplast from a ppi1 mutant plant which lacks the atToc33 protein (bottom); and a ppi1 plant with a second mutation in the SP1 gene (top). Chloroplasts from the sp1 ppi1 double mutant are much more developed than ppi1 single-mutant chloroplasts as the effects of atToc33’s absence have been substantially suppressed by the absence of SP1. Image: Mats and Paula Töpel

Professor Paul Jarvis, of the University's Department of Biology, has led the project since its inception in 2000.

He said: "Our work shows that the UPS also acts on subcellular compartments in plant cells called chloroplasts, which are responsible for the light-driven reactions of photosynthesis that power almost all life on Earth.

"Identification of this previously-unsuspected link between the UPS and chloroplasts constitutes a major breakthrough in biology, and may enable the manipulation of chloroplast functions in crops.

"It is incredible to get to this point - it has been a long journey. We have known for some time that this was going to be a big breakthrough."

The research has been funded by grants from the Biotechnology and Biological Sciences Research Council (BBSRC).

Professor Douglas Kell, Chief Executive of BBSRC, said: "To ensure that we have enough healthy, sustainable food for a growing population, we need to find a range of novel solutions to challenges such as improving crop yields and reducing food waste. This research highlights one of the many ways in which science can help.

"The ripening process can happen quickly, and it can take just a few days for a fruit or vegetable to be considered inedible. This unavoidable process means big losses to both farmers and consumers. This discovery brings us one step closer to greater control over ripening so that we have greater flexibility for farmers when supplying produces in the best condition."

ENDS

About BBSRC

BBSRC invests in world-class bioscience research and training on behalf of the UK public. Our aim is to further scientific knowledge, to promote economic growth, wealth and job creation and to improve quality of life in the UK and beyond.

Funded by Government, and with an annual budget of around £445M (2011-2012), we support research and training in universities and strategically funded institutes. BBSRC research and the people we fund are helping society to meet major challenges, including food security, green energy and healthier, longer lives. Our investments underpin important UK economic sectors, such as farming, food, industrial biotechnology and pharmaceuticals.

For more information about BBSRC, our science and our impact see: www.bbsrc.ac.uk.
For more information about BBSRC strategically funded institutes see: www.bbsrc.ac.uk/institutes.

External contact

Professor Paul Jarvis, University of Leicester

tel: 0116 223 1296