News and events:

New study hopes to reduce bone fractures in laying hens

New study hopes to reduce bone fractures in laying hens - 12 March 2013. iStockphoto
News from: University of Bristol

Skeletal health in laying hens is a major welfare and economic problem with up to 80% of hens suffering bone breakages in some free range systems. A new three-year study hopes to reduce the fracture rates in laying hens thanks to a grant of £532,000 funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and supported by industrial partner, Noble Foods.

The research project will be led by Drs John Tarlton and Michael Toscano from the University of Bristol's School of Veterinary Sciences and Dr Krasimira Tsaneva-Atanasova in the University's Department of Engineering Mathematics.

The attendees of the 2014 International Keel Bone Damage Workshop at the entrance to the Aviforum in Zollikofen, Switzerland where the workshop took place. Image: Mike Toscano
The attendees of the 2014 International Keel Bone Damage Workshop at the entrance to the Aviforum in Zollikofen, Switzerland where the workshop took place. Image: Mike Toscano

Collisions are believed to be the principle cause of keel bone fractures in free range systems (FRS) but the difficulty in observing breaks as they occur prevent a clear understanding of the determining factors.

With the 2012 EU ban on battery cage systems, as many as 30M hens will be housed in alternative systems, mostly free range. This means a possible 24M hens suffering bone breakage each year in the UK, which the industry and government view as unsustainable. Noble Foods, the UK's largest egg marketing company and a longstanding partner in the group's efforts to improve laying hen welfare, will play a central role in the study by providing open and free access to their varied housing systems.

The study will first replicate keel fractures in an ex-vivo impact testing apparatus. Bird characteristics, such as weight, age, and mechanical properties of the keel bone, and collision factors including impact energy and material compliance, will be mathematically modelled to understand how these elements interact to determine fracture occurrence and severity. The model will predict the likelihood of fractures occurring in a bird or flock.

The model will then be validated using live birds wearing specially designed vests fitted with tri-axial accelerometers, capable of measuring kinetic energies of natural impacts of birds within defined housing environments. Thus the energy and frequency of impacts a bird actually experiences will be quantified and related to the model.

On-farm studies will go on to use the accelerometers to determine kinetic energy profiles within particular commercial housing systems, which we have previously shown to impart widely differing fracture risks. The impact monitors will provide a physical measure of housing risk and allow the researchers to test the model in predicting real fractures in commercial settings.

Dr John Tarlton, Senior Research Fellow in the Infection and Immunity Group and principle investigator on the grant, said: "By analysing their kinetic energy profiles we can rapidly assess the keel bone fracture risk of commercial housing systems. From this we can identify key elements of housing or bird physiology that can be modified by producers to substantially reduce fracture rates. If successful, this study will greatly improve the health and welfare of laying hens, enhance consumer attitudes to egg production, and promote the sustainability of the UK egg industry."

The three-year study, entitled 'A mathematical modelling approach to defining factors which cause keel fractures in free range laying hens', will combine statistical and computer modelling techniques with biomechanical and biochemical analysis, and skeletal welfare assessments to enhance the health and wellbeing of hens.

ENDS

Notes to editors

The three-year study, entitled 'A mathematical modelling approach to defining factors which cause keel fractures in free range laying hens' led by Drs John Tarlton and Michael Toscano at the University of Bristol, is funded by a grant of £531,992 by the Biotechnology and Biological Sciences Research Council (BBSRC) and supported by industrial partner, Noble Foods.

About BBSRC

BBSRC invests in world-class bioscience research and training on behalf of the UK public. Our aim is to further scientific knowledge, to promote economic growth, wealth and job creation and to improve quality of life in the UK and beyond.

Funded by Government, and with an annual budget of around £500M (2012-2013), we support research and training in universities and strategically funded institutes. BBSRC research and the people we fund are helping society to meet major challenges, including food security, green energy and healthier, longer lives. Our investments underpin important UK economic sectors, such as farming, food, industrial biotechnology and pharmaceuticals.

For more information about BBSRC, our science and our impact see: www.bbsrc.ac.uk .
For more information about BBSRC strategically funded institutes see: www.bbsrc.ac.uk/institutes .

External contact

Joanne Fryer, Public Relations Office, University of Bristol

Tel: 01173 317276
Mob: 07747 768805