News and events:

A synthetic biology approach to improve photosynthesis

A synthetic biology approach to improve photosynthesis - 14 May 2014. Rothamsted Research
News from: Rothamsted Research

Assembling a compartment inside chloroplasts of flowering plants has the potential to improve the efficiency of photosynthesis

Plants, algae and bacteria capture light energy from the sun and transform it into chemical energy by the process named photosynthesis. To ensure food security in the future, yields of crops must continually be increased to keep pace with the world population. Improving the photosynthetic rate is one strategy to improve plant productivity. Rothamsted Research scientists strategically funded by the BBSRC and in collaboration with colleagues at Cornell University funded by the U.S. National Science Foundation have used synthetic biology approaches to demonstrate for the first time that micro-compartments made up of proteins originating in bacteria can be assembled in the chloroplasts of flowering plants. These findings represent important progress toward the goal of making plants more efficient at fixing carbon dioxide from the air into molecules that can be used by the plant for growth. The study has been published in The Plant Journal.

Dr Alessandro Occhialini, Rothamsted Research scientist applied sophisticated microscope techniques to observe the assembly of the compartment in plant chloroplasts. " I was thrilled to see small round or oval bodies in chloroplasts several days after I infiltrated bacterial genes into the leaves." In order to engineer the bacterial genes to work properly in plants, postdoctoral fellow Dr. Myat Lin at Cornell used recombinant DNA methods to connect the bacterial DNA to plant DNA sequences so that several bacterial proteins could be produced simultaneously in chloroplasts and spontaneously assemble into small compartments. Dr. Lin commented, "Being a part of a project with such a big goal to improve photosynthesis has been tremendously rewarding. While more work is ahead, we certainly have a very promising start."

Professor Maureen Hanson, lead scientist at Cornell University said: "We are delighted with the encouraging results from our collaboration with the Rothamsted Research group, whose expertise in photosynthesis and electron microscopy complements our capabilities in genetic engineering."

Professor Martin Parry, lead scientist at Rothamsted Research, said: "We are truly excited about the findings of this study. Improving photosynthetic rate in crop plants has been scientifically challenging and the developments in the areas of synthetic biology and metabolic engineering enable us to make significant progress. It is important that we explore all available tools to us in order to ensure food and fuel security in the future".

ENDS

Notes to editors

Nicotiana benthamiana is a model plant species related to tobacco and routinely used in research.

Cyanobacteria have a natural CO2 concentration mechanism that is encapsulated in microcompartments called the carboxysome.

About Cornell University, Ithaca, NY

Cornell University's colleges, schools, and other academic units offer more than 4,000 courses, 70 undergraduate majors, 93 graduate fields of study, undergraduate and advanced degrees, and continuing education and outreach programs. The Cornell College of Agriculture and Life Sciences (CALS) is the third largest college of its kind in the United States. The College's educational programs are geared towards contemporary, real-world issues. Faculty, staff, and students at CALS are at the cutting edge of research in the life sciences, environmental sciences, food and energy systems, and community and economic vitality.

About Rothamsted Research

We are the longest running agricultural research station in the world, providing cutting-edge science and innovation for nearly 170 years. Our mission is to deliver the knowledge and new practices to increase crop productivity and quality and to develop environmentally sustainable solutions for food and energy production.

Our strength lies in the integrated, multidisciplinary approach to research in plant, insect and soil science. Rothamsted Research receives strategic funding from the Biotechnology and Biological Sciences Research Council (BBSRC) of £27.2M per annum.

About BBSRC

BBSRC invests in world-class bioscience research and training on behalf of the UK public. Our aim is to further scientific knowledge, to promote economic growth, wealth and job creation and to improve quality of life in the UK and beyond.

Funded by Government, and with an annual budget of around £467M (2012-2013), we support research and training in universities and strategically funded institutes. BBSRC research and the people we fund are helping society to meet major challenges, including food security, green energy and healthier, longer lives. Our investments underpin important UK economic sectors, such as farming, food, industrial biotechnology and pharmaceuticals.

For more information about BBSRC, our science and our impact see: www.bbsrc.ac.uk.
For more information about BBSRC strategically funded institutes see: www.bbsrc.ac.uk/institutes.