Share this page:
Other services (opens in new window)
Sets a cookie

Doubling the information from the Double Helix

Novel regulatory molecules called mirror-microRNAs control multiple aspects of brain function

27 April 2012

Our genes control many aspects of who we are - from the colour of our hair to our vulnerability to certain diseases - but how are the genes, and consequently the proteins they make themselves controlled? Researchers funded by the Biotechnology and Biological Sciences Research Council, the Medical Research Council and the Wellcome Trust have discovered a new group of molecules which control some of the fundamental processes behind memory function and may hold the key to developing new therapies for treating neurodegenerative diseases.

The research, led by academics from the University of Bristol's Schools of Clinical Sciences, Biochemistry and Physiology and Pharmacology and published in the Journal of Biological Chemistry, has revealed a new group of molecules, called mirror-microRNAs.

MicroRNAs are non-coding genes that often reside within 'junk DNA' and regulate the levels and functions of multiple target proteins - responsible for controlling cellular processes in the brain. The study's findings have shown that two microRNA genes with different functions can be produced from the same piece (sequence) of DNA - one is produced from the top strand and another from the bottom complementary 'mirror' strand.

Specifically, the research has shown that a single piece of human DNA gives rise to two fully processed microRNA genes that are expressed in the brain and have different and previously unknown functions. One microRNA is expressed in the parts of nerve cells that are known to control memory function and the other microRNA controls the processes that move protein cargos around nerve cells.

James Uney, Professor of Molecular Neuroscience in the University's School of Clinical Sciences said: "These findings are important as they show that very small changes in miRNA genes will have a dramatic effect on brain function and may influence our memory function or likelihood of developing neurodegenerative diseases. These findings also suggest that many more human mirror microRNAs will be found and that they could ultimately be used as treatments for human neurodegenerative diseases such as dementia."

MicroRNAs can be seen as a novel regulatory layer within the genome, relying on the interaction between different RNA molecules. Through binding to messenger RNA (mRNA), they adjust the levels of proteins. Due to their small size, they are able to regulate many different RNAs. MicroRNAs have already been found throughout the double helix, lying in between genes or in areas of the code for a single gene that would normally be discarded. Such areas that were once considered "junk DNA" are now revealing a more complex and important role. In addition miRNAs can be produced in conjunction with their genes, within which they lie, or be controlled and produced entirely independently.

ENDS

Notes to editors

The paper, entitled 'MiR-3120 Is a Mirror MicroRNA That Targets Heat Shock Cognate Protein 70 and Auxilin Messenger RNAs and Regulates Clathrin Vesicle Uncoating' is available to view on the Journal of Biological Chemistry website at: www.jbc.org/content/early/2012/03/05/jbc.M111.326041.abstract

About BBSRC

BBSRC invests in world-class bioscience research and training on behalf of the UK public. Our aim is to further scientific knowledge, to promote economic growth, wealth and job creation and to improve quality of life in the UK and beyond.

Funded by Government, and with an annual budget of around £445M, we support research and training in universities and strategically funded institutes. BBSRC research and the people we fund are helping society to meet major challenges, including food security, green energy and healthier, longer lives. Our investments underpin important UK economic sectors, such as farming, food, industrial biotechnology and pharmaceuticals.

For more information about BBSRC, our science and our impact see: www.bbsrc.ac.uk .
For more information about BBSRC strategically funded institutes see: www.bbsrc.ac.uk/institutes .

External contact

Caroline Clancy, University of Bristol Press Officer

tel: 0117 928 8086
fax: 07776 170238