News and events:

Spinal nerve connections develop using simple rules

Spinal nerve connections develop using simple rules - 9 January 2014. iStock
News from: University of Bristol

Repairing spinal injuries with stem cells may be a step closer thanks to BBSRC-funded scientists at the Universities of Bristol and Plymouth. A new study, published in the Journal of Neuroscience, employed novel techniques to show that spinal neuron networks may develop using much simpler rules than expected.

In the first study of its kind, the scientists studied the anatomy and physiology of young frog tadpoles and, from the results, built the first complete reconstruction of a nerve cell network that can produce complex behaviour in a whole vertebrate organism.

They observed imprecise connections between nerve cell fibres depending on where they were located in the brain and spinal cord, and built these into their computer model of nerve growth. It contained nearly 100,000 connections and can make a model of the tadpole nervous system 'swim' when stimulated exactly like a real tadpole.

The findings challenge the generally accepted idea that nerve cell connections in developing embryonic animals are only made using highly specific recognition processes like those used when nerve cells in the eye find the correct part of the brain.

Lead researcher Professor Alan Roberts from Bristol's School of Biological Sciences said: "Adult animal nervous systems are highly complex with billions of connections, however, since humans evolved from simple vertebrates like fish and frogs our results imply that early in development, simple rules may lay out the first functional nerve cell networks in our brains.

"The next step is to investigate how imprecise the connections can be while still allowing the correct behaviour to be displayed and to understand how the networks controlling other aspects of tadpole behaviour are constructed."

ENDS

Notes to editors

Reference: The papaer 'Building the early nervous system: can simple rules control development of a pioneer vertebrate network generating behavior?' by Alan Roberts, Deborah Conte, Mike Hull, Robert Merrison-Hort, Abul Kalam al Azad, Edgar Buhl, Roman Borisyuk and Stephen R.Soffe in the Journal of Neuroscience.

For further information please contact Dr Alan Roberts, tel: 01179 287488, or email: a.roberts@bristol.ac.uk.

About BBSRC

BBSRC invests in world-class bioscience research and training on behalf of the UK public. Our aim is to further scientific knowledge, to promote economic growth, wealth and job creation and to improve quality of life in the UK and beyond.

Funded by Government, and with an annual budget of around £467M (2012-2013), we support research and training in universities and strategically funded institutes. BBSRC research and the people we fund are helping society to meet major challenges, including food security, green energy and healthier, longer lives. Our investments underpin important UK economic sectors, such as farming, food, industrial biotechnology and pharmaceuticals.

For more information about BBSRC, our science and our impact see: www.bbsrc.ac.uk.
For more information about BBSRC strategically funded institutes see: www.bbsrc.ac.uk/institutes.