News, events and publications:

Minister announces UK funding to build world-first synthetic yeast

Minister announces UK funding to build world-first synthetic yeast - 11 July 2013. iStockphoto

Minister for Universities and Science David Willetts will today announce nearly £1M funding for the UK arm of an international consortium attempting to build a synthetic version of the yeast genome by 2017.

The announcement will be made during a speech at the Sixth International Meeting on Synthetic Biology at Imperial College London on Thursday (July 11).

David Willetts said: "This research is truly groundbreaking and pushes the boundaries of synthetic biology. Thanks to this investment, UK scientists will be at the centre of an international effort using yeast - which gives us everything from beer to biofuels - to provide new research techniques and unparalleled insights into genetics. This will impact important industrial sectors like life sciences and agriculture."

When completed it will be the first time scientists have built the whole genome of a eukaryotic organism - those organisms, like animals and plants, which store DNA within a nucleus. Scientists can then design different strains of synthetic yeast that contain genes to make commercially valuable products such as chemicals, vaccines or biofuels.

Collaborators from the UK, USA, China and India are meeting at Imperial College London to discuss their plans and progress so far, and hear from related projects underway using bacteria. For the Sc 2.0 project, teams at universities around the world are responsible for building each of the 16 individual yeast chromosomes that together comprise the complete genome.

Funding for the UK team, led by Dr Tom Ellis and Prof Paul Freemont at the Centre for Synthetic Biology and Innovation (CSynBI) at Imperial College London, with help from Prof Alistair Elfick at the University of Edinburgh and Prof Steve Oliver at Cambridge University, was recently approved from the Biotechnology and Biological Sciences Research Council (BBSRC) with co-funding from the Engineering and Physical Sciences Research Council (EPSRC).

The £970,000 funding for the Sc 2.0 UK Genome Engineering Resource (SUGER), awarded through the Bioinformatics and Biological Resources Fund, will allow the UK team to build and test Synthetic Chromosome XI, which is 0.7 million DNA base pairs long.

Dr Tom Ellis, Lecturer in Synthetic Biology at Imperial College London, said: "We are excited to be welcoming our new international consortium partners to London to discuss Sc 2.0. Having recently secured funding for the UK to be part of this ground-breaking project, we are looking forward to getting started and being part of the action. It's a perfect fit for our work in synthetic biology here at Imperial, where we really view yeast as a tiny factory that can be tooled-up to produce new molecules. A synthetic genome will allow us to reprogram yeast and our goal is to use it to produce new antibiotics as resistance arises to existing ones."

The synthetic yeast genome will be tailored to aid research and is expected to give new and detailed insights into many aspects of genetics including genome organisation, structure and evolution, as well as advance the exciting new field of synthetic biology.

The project originated from Johns Hopkins University in Baltimore, USA, and is being co-ordinated by Professor Jef Boeke of the Johns Hopkins University School of Medicine.

Prof Boeke said: "Sc 2.0, once completed, will provide unparalleled opportunities for asking profound questions about biology in new and interesting ways, such as: How much genome scrambling generates a new species? How many genes can we delete from the genome and still have a healthy yeast? And how can an organism adapt its gene networks to cope with the loss of an important gene? Moreover, genome scrambling may find many uses in biotechnology, for example in the development of yeast that can tolerate higher ethanol levels."

Professor Freemont, co-director of CSynBI and Chair in Protein Crystallography at Imperial College London, added: "Yeasts have evolved over millions of years, making energy from sugars and excreting alcohol and carbon dioxide gas. Humans have adapted these organisms to our advantage, using their by-products to make alcoholic drinks and risen baked goods. Now we have the opportunity to adapt yeasts further, turning them into predictable and robust hosts for manufacturing the complex products we need for modern living. "

The S. cerevisiae genome was picked for the project because its 6,000 genes make it relatively small and scientists are already very familiar with it; yeast was the first eukaryotic organism to have its genome completely sequenced.

To complete the work a new suite of bioinformatics software and detailed genome engineering methods are being developed and these, alongside the highly-evolvable synthetic yeast strains themselves, will be made an open-access resource to advance research in numerous fields.

Alongside BBSRC and EPSRC, major funders for the Sc 2.0 consortium members in their respective countries include the USA's National Science Foundation (NSF), the US Department of Energy, China's Ministry of Science and Technology (MoST) and the Tsinghua University Initiative Scientific Research Program.

ENDS

Notes to editors

For more information contact Chris Melvin, media officer at BBSRC on 01793 414694 or chris.melvin@bbsrc.ac.uk.

About EPSRC

The Engineering and Physical Sciences Research Council (EPSRC) is the UK's main agency for funding research in engineering and the physical sciences. EPSRC invests around £800 million a year in research and postgraduate training, to help the nation handle the next generation of technological change.

The areas covered range from information technology to structural engineering, and mathematics to materials science. This research forms the basis for future economic development in the UK and improvements for everyone's health, lifestyle and culture.

EPSRC works alongside other Research Councils with responsibility for other areas of research. The Research Councils work collectively on issues of common concern via Research Councils UK. www.epsrc.ac.uk

About BBSRC

BBSRC invests in world-class bioscience research and training on behalf of the UK public. Our aim is to further scientific knowledge, to promote economic growth, wealth and job creation and to improve quality of life in the UK and beyond.

Funded by Government, and with an annual budget of around £500M (2012-2013), we support research and training in universities and strategically funded institutes. BBSRC research and the people we fund are helping society to meet major challenges, including food security, green energy and healthier, longer lives. Our investments underpin important UK economic sectors, such as farming, food, industrial biotechnology and pharmaceuticals.

For more information about BBSRC, our science and our impact see: www.bbsrc.ac.uk .
For more information about BBSRC strategically funded institutes see: www.bbsrc.ac.uk/institutes .